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Abstract

In legislative redistricting, most states draw their House and Senate maps sepa-
rately. Ohio and Wisconsin require that their Senate districts be made with a 3:1
nesting rule, i.e., out of triplets of adjacent House districts. We study the impact of
this requirement on redistricting, specifically on the number of seats won by a partic-
ular political party. We compare two ensembles generated using Markov Chain Monte
Carlo methods; one which uses the ReCom chain to generate Senate maps without
a nesting requirement, and the other which uses a chain that generates Senate maps
with a 3:1 nesting requirement. We find that requiring a 3:1 nesting rule has minimal
impact on the distribution of seats won. Moreover, we probe how 3:1 nesting can mit-
igate partisan gerrymandering, and find that nesting reduces the ability of a party to
bias the Senate map.
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1 Introduction

Each state in the U.S., with the exception of Nebraska, has a bicameral legislature, meaning

there is an upper and lower house [2]. Most states draw district maps for their two houses

separately. Eight states require that the state Senate map be made of pairs of adjacent dis-

tricts from the lower house; we call this a 2:1 nesting rule. Two states, Ohio and Wisconsin,

require a 3:1 nesting rule, in which the state Senate map is made of triplets of adjacent

districts from the lower house. These rules are often in place to help election administration;

when you know that everyone in a house district is a member of the same senate district,

you have to print fewer ballot types.

In theory, these nesting rules severely restrict the number of possible maps that can be

drawn. Consider the toy example on the 6× 6 grid in Figure 1 from [10]. There are 264,500
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Figure 1: The 6 × 6 grid, where each square represents one voter, either of the yellow or

orange party. We have chosen a fixed partition into nine House districts and constructed the

corresponding dual graph.

ways to construct a Senate plan with 3 districts with no restrictions [1]. However, if we fix a

lower house map with nine districts, and only consider Senate maps made out of triplets of

adjacent districts, we find there are only 14 Senate plans. Common wisdom says that this

restriction on the space of redistricting plans should reduce the variability of the plans. But

even in this toy example, we see that under the matching {(1, 2, 4), (3, 6, 9), (5, 7, 8)}, the

yellow party wins one seat, while in the matching {(1, 3, 6), (2, 5, 8), (4, 7, 9)}, yellow wins all

three seats. This suggests that even with a restricted state space, a significant variation in

election outcome is possible.

In this paper, we analyze the impact of these 3:1 nesting rules on redistricting. Our key
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findings are twofold. First, that a 3:1 nesting rule has little impact on the distribution of

Democrat seats won when compared to unnested maps. Second, that nesting allows a wide

range of Senate maps regardless of bias at the House level, as well as reduces the overall

ability of a party to optimize for seats won. This suggests that as a policy intervention,

nesting may be used to mitigate partisan gerrymandering.

The rest of the paper proceeds as follows. Section 2 introduces the basic mathematics of

redistricting and sampling plans with Markov chains. In Section 3, we provide an overview

of prior work and introduce the Swap Markov chain which we use to sample 3:1 nested

maps. Section 4 discusses the provenance of our election and geospatial data, while Section

5 examines convergence diagnostics of our Markov chains. In Section 6, we compare the

properties of nested and unnested maps and in Section 7, we study the ability of nesting to

mitigate gerrymandering. Finally, Section 8 proposes some future directions for study and

policy implications of our work.

2 The Mathematics of Redistricting

2.1 Dual Graphs

Redistricting is a discrete problem. States are divided into small units, like precincts or

Census blocks, and these discrete units are then assigned to districts. Mathematically, we

formulate this problem using a dual graph. The vertices of the dual graph G are the discrete

units, and an edge denotes geographic adjacency, where we require that two units share a

border of positive length. A districting plan D = (D1, . . . , Dn) is a partition of the vertices

of the dual graph into n components, i.e., districts. By both federal and state law, districting

plans must meet a host of other requirements. Some of the most typical ones include

1. contiguity; each component of the partition must form a connected induced subgraph

of G. That is, districts must be connected.

2. population balance; since the U.S. Supreme Court ruling in Reynolds v. Sims in 1964

[17], districts must have roughly equal population. We usually take this to be within

5% of the ideal population, but map drawers usually can balance this to within just a

few individuals [13].
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3. compactness; this is hard to operationalize, but people do not like seeing “snakey”

districts.

We take our dual graph to be the House dual graph, in which the vertices represent House

districts. A 3:1 nested Senate map is thus a districting plan on the House dual graph with the

further constraints that each component of the partition be of size 3 and each component be

connected. We do not take population balance into account; we assume that the underlying

House dual graph is already population balanced. When making nested maps, we assume

that the chosen House map is compact, and do not impose further compactness restrictions

on the Senate maps.

2.2 Ensemble Analysis

Gerrymandering is the process of drawing districts to advantage one class of people over

another. The question of how to tell if a map is gerrymandered goes well beyond the scope

of this paper and crosses numerous academic disciplines and practical issues. One prominent

method in the literature is the use of ensemble methods (see Chapter 16 and 17 of [9]). Using

some generative process, a large number, or ensemble, of districting plans are constructed

for a particular state. Then, a proposed or enacted map can be compared to the ensemble,

and if it is an outlier in some statistic, that might indicate that it is gerrymandered.

One generative method used in the redistricting literature for sampling graph partitions

is to use Markov Chain Monte Carlo (MCMC) methods (see, for example, [8]) . Informally,

a Markov chain is a process that takes an initial object, updates that object via some

probabilistic rule, and returns the new object. This is one step of the chain; MCMC methods

involve taking many steps in the chain, and using the generated objects as a sample. The

ReCom Markov chain was first introduced in [8] to generate districting plans that meet

the generally accepted standards for “good” districts. Given a dual graph and an initial

districting plan, the ReCom chain merges two adjacent districts, generates a spanning tree

on the resulting induced subgraph, and randomly cuts the spanning tree, resulting in two

new districts.

We use the ReCom algorithm on the precinct/ward dual graphs for Ohio/Wisconsin to

generate ensembles of Senate plans that do not follow any 3:1 nesting rule (unnested Senate
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plans). To generate maps that follow a 3:1 nesting rule (nested Senate plans), we use the

enacted House plan as our dual graph and run a Markov chain called “Swap”, which is

discussed in Section 3.1.

3 Prior Work

Constructing maps using nesting rules has been proposed as a game-theoretic way of gener-

ating fair maps [14]. In [4], the authors explore how 2:1 nesting rules impact redistricting.

They found that in Alaska, the 2:1 nesting rule had minimal impact on how many seats

Democrats could win. In other words, they could win the same range of seats with or

without the 2:1 nesting rule.

In [4], the authors are able to do two kinds of analysis. When computationally feasible,

they construct all possible 2:1 nestings on a House dual graph, and study the properties of

the maps. When it is infeasible to construct all 2:1 nestings, they can uniformly sample

them thanks to a connection to perfect matchings and the FKT algorithm. Unfortunately,

constructing all possible 3:1 nested plans for Ohio or Wisconsin is computationally infeasible.

The 3:1 nesting requirement can be formulated as a problem about perfect matchings on 3-

uniform hypergraphs, which is one of Karp’s original NP-complete problems [12]. Moreover,

the method of uniform sampling used in [4] does not extend to 3:1 nestings.

3.1 Swap Chain

In order to sample 3:1 nested Senate maps, we make use of a Markov chain first introduced

by Durham in [10], which we call the Swap chain. Given a 3:1 nested Senate map, to take a

step in the chain, proceed as follows.

1. Choose two House districts uniformly at random with replacement.

2. Swap the Senate district assignment of the two House districts.

3. If this swap does not create a valid (i.e., contiguous) Senate map, go back to step 1.

4. If the swap does create a valid (contiguous) Senate map, accept the new map.
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Figure 2: The left side shows a valid swap of two House districts, while the right side shows

an invalid swap, since it disconnects the yellow district.

See Figure 2.

The Swap chain is almost equivalent to running ReCom on the House dual graph if

you impose a population of 1 on each node and ask ReCom to generate maps with strict

population balance. Any swap of two vertices can be achieved by cutting a spanning tree and

vice versa. Thus, the two chains have equivalent state space connectivity. A recent arXiv

preprint shows Swap is not always irreducible [16]. That is, we cannot always get from one

districting plan to every other one via Swap moves. However, this theoretical result is about

grid graphs, and we see no evidence that our chain is not effectively moving through the

state space for real world dual graphs.

In this setting, ReCom and Swap do sometimes differ in their target measures. Since

Swap has symmetric transition probabilities, it targets the uniform distribution. ReCom

nearly targets the spanning tree distribution in which the probability of sampling a plan is

proportional to the number of spanning trees [8]. In the case of 3:1 nested maps, this would

favor districts made of 3-cycles over districts that are made of paths. Since our study is

concerned with understanding the distribution of possible 3:1 nested maps, and since we see

no real world preference for one kind of Senate nesting over another, we choose to use Swap

so that we target the uniform distribution.

4 Our Data

In order to analyze maps produced by our Markov chains, we need to know how people

vote. Our best substitute for this is to take past election data and assume that people

living in a district will vote the way they did in a previous election. Unfortunately, voting

data is reported at the precinct/ward group level in Ohio and Wisconsin, while districts
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are composed of Census blocks. We thus rely on third party collection sources who put

in an enormous amount of effort creating digital SHP files that record the boundaries of

precincts/wards along with election data. In this paper, we use both the MGGG Redistrict-

ing Lab’s (MGGG) and the Redistricting Data Hub’s (RDH) collection of SHP files that

include precinct boundaries and election data. For more information on which SHP files we

used, how we included population data, any preprocessing decisions made before running

our Markov chains, and our code for running the chains, see our GitHub repository [6].

In Ohio, out of the nine statewide elections for which we had precinct files, we selected

the 2018 Senate (SEN18) and Treasurer (TRES18) races as our election data. The 2018

Senate and Treasurer election data have a very similar vote percentage, but flipped for each

party. In SEN18 we have 53.4% for the Democratic candidate and 46.6% for the Republican,

while in the TRES18 we have 53.5% for the Republican and 46.7% for the Democrat. There

is not a major third party/write-in presence in either race.

In Wisconsin, out of the six statewide elections since 2016 for which we had SHP files,

we decided to work with the 2018 Senate (SEN18) and Attorney General (AG18) races.

The 2018 Senate race has the lowest Republican vote share out of all of the available races

(44.6%), while the 2018 Attorney General race has the highest (48.8%).

5 Exploring Convergence

It is important to ensure that we have taken enough steps of our Markov chain to converge

to the underlying distribution. To explore the convergence of our chains, we proceed as in [7]

and [11]; we choose relevant summary statistics for our ensembles, project to said statistics,

and explore convergence there. Of course, none of this precludes pseudo-convergence. We

choose the number of Democrat seats won as our statistic. We use several heuristics to

explore convergence:

1. We compute the n-lag autocorrelation of the desired statistic, i.e., the Pearson corre-

lation between the series and itself shifted by n. An autocorrelation of lag n close to

0 indicates no linear correlation between the statistic at one time and n steps in the

future. Autocorrelations that quickly decay to 0 indicate a fast-mixing Markov chain

[15].
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Figure 3: Autocorrelation plots for a 3:1 nested Swap ensemble in Ohio and an unnested

ReCom ensemble in Wisconsin, started from the enacted Senate map (E) in each state.

2. We examine the first 10%, 50%, and 100% of the run of the chain, and see if our desired

statistic has stabilized.

3. We examine runs of the chain started from different seeds, and see if the desired statistic

is reasonably similar across seeds.

We also note that we do not show each figure with every type of election data or for each

type of chain. However, all of our results are consistent across such choices unless otherwise

noted, and the full set of figures can be found in our GitHub repository [6]. As a result of

our discussion below, we run our Swap and ReCom chains for 1 million steps.

For both chains, by 2,000 steps, the autocorrelation for seats won by Democrats begins

to hover around 0. See Figure 3. In both Ohio and Wisconsin, we see that 50%, and 100%

of a 1 million step ensemble have nearly identical distributions of ranked % Democratic vote

share for each chain type. See Figure 4.

In the 3:1 nested setting, a different seed is an alternative Senate map on the same House

map. We make use of a method included in the gerrychain Python package that generates

random initial seeds; we call these randomly generated seeds S1 and S2. In both states, under

any election data, we see very similar histograms of seats won regardless of the starting seed.

This is a strong indication of convergence. See Figure 5.

In the unnested setting, a different seed is just an alternative Senate map on the precincts/wards.
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Figure 4: Ranked % Democratic Vote Share in Ohio for 10%, 50%, and 100% of a 1 million

step unnested ReCom ensemble and in Wisconsin for a 3:1 nested Swap ensemble, started

from the enacted Senate map (E) in each state.
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Figure 5: The number of seats won by Democrats across different seed plans for Ohio and

Wisconsin 3:1 nested Swap ensembles. The number next to the seed name indicates the

number of seats won by Democrats under the seed plan.

The Ohio Redistricting Commission posts submitted Senate plans in a digital format, thus

allowing us to have different seeds for the unnested chain. We take the Sykes/Russo Demo-

cratic plan (D), the Johnson McDonald Independent plan (I), and the Ohio Citizens’ Redis-

tricting Commission plan (C) as three alternate seeds for ReCom. For Wisconsin, alternate

Senate plans are not submitted in a format that is easy to digitize, so we again use gerrychain

to construct two new seeds for Wisconsin (S1, S2). In Ohio and Wisconsin, we see that our

choice of seed for ReCom also does not impact the distribution of seats won by Democrats.

This is a strong indication of convergence. See Figure 6.

6 Results

6.1 Comparing Ohio Nested and Unnested

We now compare the behavior of the two ensembles to each other. In some sense, we are

taking the unnested ensemble to be the “control” and the nested ensemble tells us how much

the 3:1 nesting rule impacts the outcome.

Under SEN18, the nested and unnested ensembles behave almost identically. As seen

in Figure 7, the only visible difference is that the nesting requirement seems to shift the

distribution marginally to the left, in favor of Republicans. But this shift is negligible in
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Figure 6: The number of seats won by Democrats across different seed plans in unnested

ReCom ensembles. The number next to the seed name indicates the number of seats won

by Democrats under the seed plan.

terms of the number of seats; the nested ensemble has a range of 14 to 23 seats, while the

unnested ensemble has a range of 13 to 24 seats. While the nesting requirement does narrow

the distribution of seats won by one seat in each direction, the unnested ensemble hardly

ever samples the 13 and 24 seat maps. In other words, the bulk of the distributions is the

same.

Under TRES18, the two ensembles also behave almost identically, except now the nesting

requirement shifts the distribution of seats won slightly to the right. See Figure 7. The nested

ensemble has a range of 8 to 17 seats, while the unnested ensemble has a range of 7 to 18

seats. Again, the range of possible seat values is nearly identical, particularly given how few

of the 7 and 18 seat maps are sampled. Thus, in Ohio, the 3:1 nesting requirement does not

significantly impact the number of seats won.

6.2 Comparing Wisconsin Nested and Unnested

We compare the behavior of the nested and unnested ensembles for Wisconsin. See Figure

8. Under the SEN18 data, the nested chain is shifted marginally to the left, in favor of the

Republicans, but the range of possible seats is nearly identical in both ensembles. In the

nested ensemble, the range is 15 to 24 seats, while in the unnested ensemble it is 15 to 25

seats.
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Figure 7: Comparing the nested and unnested ensembles in Ohio under SEN18 and TRES18.

Chains were started from the enacted Senate map (E).
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Figure 8: Comparing the nested and unnested ensembles in Wisconsin. Chains were started

from the enacted Senate map (E).

The AG18 election data is the only data for which we see a significant change in dis-

tribution. Here, the bulk of the nested ensemble is shifted in favor of Republicans, with

the range of seats changing from 9 through 18 (unnested) to 8 through 16 (nested). Even

with the visible difference in the histograms, we still find that the nesting requirement only

reduced the maximum number of seats won by 2. It is interesting to note that in Ohio, the

distributions shifted in either direction, but in Wisconsin, the nesting requirement seems to

shift the distributions in favor of the Republicans regardless of the election data.
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Figure 9: Three neutral Senate distributions generated by Swap ensembles based on three

different house maps: one with Republican bias, one with Democrat bias, and one without

any bias. The number in the legend indicates the number of seats won by the Democrats at

the House level under the chosen House dual graph.

7 Mitigating Partisan Gerrymandering

It is natural to wonder whether the nesting rule mitigates partisan gerrymandering. We first

examine what impact the underlying House map has on the distribution of possible Senate

maps. In order to study this we used the short burst algorithm to generate House maps

with extreme numbers of seats won, both for Democrats and then again for Republicans [5].

We then took these biased House maps as our underlying dual graphs, and generated an

ensemble of nested maps to see how this impacted the distribution of Senate seats. We also

used a neutral House map as a control.

Despite enormous differences in the number of seats won for Democrats at the House level,

the choice of House map had little impact on the distribution of Senate seats. In Figure 9 we

see that the distributions built on the Republican House map and the Democrat House map

have visibly shifted away from the neutral distribution, in favor of whatever party we were

biasing for. Table 1 summarizes the ranges of the ensembles. When we consider just how

biased the underlying House maps were and how similar the ranges of the distributions are,

this experiment suggests that regardless of how the House map was drawn, there is a wide

range of possibilities for the Senate map. This is in some ways expected. If gerrymandering

is a process that “happens in the margins,” the act of 3:1 nesting tends to erase carefully
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OH SEN18 WI AG18

House Bias House D Min D Max D House D Min D Max D

Republican 32 13 22 24 8 16

Neutral 54 13 23 40 9 17

Democrat 74 15 25 62 10 19

Table 1: The range of Democrat seats won by the neutral ensemble of Senate maps built

on three different House maps. The column “House D” reports the number of seats won by

Democrats in each House map.

Republican Democrat

Unnested Opt. Nested Opt. Unnested Opt. Nested Opt.

OH SEN18 10 12 28 26

OH TRES18 3 5 22 19

WI SEN18 10 13 30 28

WI AG18 5 6 22 21

Table 2: The seats won by Democrats under the most biased map found by nested and

unnested optimizations.

drawn boundary lines at the Senate level, resulting in a more neutral distribution.

In addition to generating a neutral distribution on the biased House maps, we also at-

tempt to generate biased Senate maps. We generate a biased Senate map on the precinct

dual graph (thus acting as a control), and another biased Senate map on the dual graph of

the biased House map we generated above. Again, we use short burst optimization. Table 2

shows that the unnested Senate map optimization consistently found more biased maps than

the nested Senate map optimization. This suggests that 3:1 nesting can, to some extent,

curtail partisan gerrymandering.

8 Conclusion

In summary, with the exception of the Wisconsin AG18 data, the 3:1 nesting rule seems to

have little impact on the distribution of Democrat seats won. This echoes the results of [4].
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Even in the case of AG18, the nesting requirement only reduced the maximum number of

seats won by 2. We also found that nesting allows a wide range of Senate maps regardless

of bias at the House level, as well as reduces the overall ability of a party to optimize for

seats won. Taken as a whole, our findings suggest that nesting rules may be used as a policy

intervention to mitigate partisan gerrymandering.

Some future directions include:

1. In order to make more realistic Senate maps, it would be useful to implement Ohio’s

county splitting requirements. One promising avenue for this is to use Forest ReCom,

a recently developed Markov chain designed to preserve hierarchical structures, like

counties [3].

2. If biasing the House maps for seats did not separate the Senate distributions, what

would cause a separation? In other words, what properties of the House map actually

impact the possible 3:1 nestings?

3. What happens if you build the Senate map first, and then subdivide each district?

4. How much of a difference is there between using Swap and ReCom to generate nested

maps?
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